Nonequilibrium thermodynamics of restricted Boltzmann machines.

نویسنده

  • Domingos S P Salazar
چکیده

In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Problem of Formulating Principles in Nonequilibrium Thermodynamics

In this work, we consider the choice of a system suitable for the formulation of principles in nonequilibrium thermodynamics. It is argued that an isolated system is a much better candidate than a system in contact with a bath. In other words, relaxation processes rather than stationary processes are more appropriate for the formulation of principles in nonequilibrium thermodynamics. Arguing th...

متن کامل

Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data

This report proofs that discriminative Restricted Boltzmann Machines (RBMs) are universal approximators for discrete data by adapting existing universal approximation proofs for generative RBMs. Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data Laurens van der Maaten Pattern Recognition & Bioinformatics Laboratory Delft University of Technology

متن کامل

Thermodynamics of Restricted Boltzmann Machines and related learning dynamics

We analyze the learning process of the restricted Boltzmann machine (RBM), a certain type of generative models used in the context of unsupervised learning. In a first step, we investigate the thermodynamics properties by considering a realistic statistical ensemble of RBM, assuming the information content of the RBM to be mainly reflected by spectral properties of its weight matrix W . A phase...

متن کامل

Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.

By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present f...

متن کامل

Learning and Evaluating Boltzmann Machines

We provide a brief overview of the variational framework for obtaining deterministic approximations or upper bounds for the log-partition function. We also review some of the Monte Carlo based methods for estimating partition functions of arbitrary Markov Random Fields. We then develop an annealed importance sampling (AIS) procedure for estimating partition functions of restricted Boltzmann mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 96 2-1  شماره 

صفحات  -

تاریخ انتشار 2017